Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository

Author:

Swanson Julie1,Navarrette Adrianne1,Knox Jandi1,Kim Hannah1,Stanley Floyd1

Affiliation:

1. Los Alamos National Laboratory, Carlsbad, NM 88220, USA

Abstract

Biologically enhanced transport of radionuclides is one of several processes that can affect the performance of a nuclear waste repository. In this work, several microbial isolates from the Waste Isolation Pilot Plant (WIPP) were tested for their influence on the concentration of neodymium, as an analog for +3 actinides, in simple sodium chloride solutions and in anoxic WIPP brines. Batch sorption experiments were carried out over a period of 4–5 weeks. In many cases, the effect on neodymium in solution was immediate and extensive and assumed to be due to surface complexation. However, over time, the continued loss of Nd from the solution was more likely due to biologically induced precipitation and/or mineralization and possible entrapment in extracellular polymeric substances. The results showed no correlation between organism type and the extent of its influence on neodymium in solution. However, a correlation was observed between different test matrices (simple NaCl versus high-magnesium brine versus high-NaCl brine). Further experiments were conducted to test these matrix effects, and the results showed a significant effect of magnesium concentration on the ability of microorganisms to remove Nd from solution. Possible mechanisms include cation competition and the alteration of cell surface structures. This suggests that the aqueous chemistry of the WIPP environs could play a larger role in the final disposition of +3 actinides than the microbiology.

Funder

US Department of Energy—Carlsbad Field Office

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3