Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm

Author:

Wu Shaopeng1,Cui Lulu1,Han Yu1,Lin Fang1,Huang Jiaqi1,Song Mengze1,Lan Zouran2,Sun Shuhong1ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China

2. Shandong Provincial Center for Animal Disease Control, Jinan 250000, China

Abstract

Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use of antibiotics has led to the emergence of multidrug resistance in E. coli as a significant global problem and long-term challenge. Resistant E. coli can be transmitted to humans through animal products or the environment, which presents significant public health concerns and food safety issues. In this study, we analyzed the features of 135 E. coli strains obtained from a white feather broiler farm in Shandong, China, including antimicrobial susceptibility tests, detection of class 1 integrons, drug resistance genes, virulence genes, and phylogenetic subgroups. It is particularly worrying that all 135 E. coli strains were resistant to at least five antibiotic agents, and 100% of them were multidrug-resistant (MDR). Notably, the resistance genes of blaTEM, blaCTX-M, qnrS, aaC4, tetA, and tetB exhibited a high prevalence of carriage among the tested resistance genes. However, mcr-2~mcr-9 were not detected, while the prevalence of mcr-1 was found to be 2.96%. The most common virulence genes detected were EAST1 (14.07%, encoding enterotoxins) and fyuA (14.81%, encoding biofilm formation). Phylogenetic subgroup analysis revealed that E. coli belonging to groups B2 and D, which are commonly associated with high virulence, constituted 2.22% and 11.11%, respectively. The positive rate of class 1 integrons was 31.1%. Whole-genome sequencing (WGS) and animal experiments were performed on a unique isolated strain called 21EC78 with an extremely strong membrane-forming capacity. The WGS results showed that 21EC78 carried 11 drug resistance genes and 16 virulence genes. Animal experiments showed that intraperitoneal injection with 2 × 105 CFU could cause the death of one-day-old SPF chickens in 3 days. However, the mortality of Luhua chickens was comparatively lower than that of SPF chickens. This study reports the isolation of multidrug-resistant E. coli strains in poultry, which may pose a potential threat to human health via the food chain. Furthermore, the findings of this study enhance our comprehension of the frequency and characteristics of multidrug-resistant E. coli in poultry farms, emphasizing the urgent need for improved and effective continuous surveillance to control its dissemination.

Funder

Key Research and Development Program of Shandong Province, China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3