Effect of Fermentation with Streptococcus thermophilus Strains on In Vitro Gastro-Intestinal Digestion of Whey Protein Concentrates

Author:

Helal Ahmed12ORCID,Pierri Sara2,Tagliazucchi Davide2ORCID,Solieri Lisa23ORCID

Affiliation:

1. Department of Food and Dairy Sciences and Technology, Damanhour University, Damanhour 22516, Egypt

2. Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2-Pad. Besta, 42100 Reggio Emilia, Italy

3. National Biodiversity Future Center (NBFC), 90133 Palermo, Italy

Abstract

Three Streptococcus thermophilus strains, namely RBC6, RBC20, and RBN16, were proven to release bioactive peptides during whey protein concentrate (WPC) fermentation, resulting in WPC hydrolysates with biological activities. However, these bioactive peptides can break down during gastro-intestinal digestion (GID), hindering the health-promoting effect of fermented WPC hydrolysates in vivo. In this work, the effect of simulated GID on three WPC hydrolysates fermented with S. thermophilus strains, as well as on unfermented WPC was studied in terms of protein hydrolysis, biological activities, and peptidomics profiles, respectively. In general, WPC fermentation enhanced protein hydrolysis compared to unfermented WPC. After in vitro GID, WPC fermented with S. thermophilus RBC20 showed the highest antioxidant activity, whereas WPC fermented with strain RBC06 displayed the highest angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase IV (DPP-IV)-inhibitory activities. Peptidomics analysis revealed that all digested WPC samples were highly similar to each other in peptide profiles, and 85% of the 46 identified bioactive peptides were shared among fermented and unfermented samples. However, semi-quantitative analysis linked the observed differences in biological activities among the samples to differences in the amount of bioactive peptides. The anti-hypertensive peptides VPP and IPP, as well as the DPP-IV-inhibitory peptide APFPE, were quantified. In conclusion, WPC fermentation with S. thermophilus positively impacted protein hydrolysis and bioactive peptide release during GID.

Funder

Department of Life Sciences, University of Modena and Reggio Emilia

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3