The Contribution of Actinobacteria to the Degradation of Chlorinated Compounds: Variations in the Activity of Key Degradation Enzymes

Author:

Emelyanova Elena V.ORCID,Ramanaiah Sudarsu V.ORCID,Prisyazhnaya Nataliya V.,Shumkova Ekaterina S.,Plotnikova Elena G.,Wu Yonghong,Solyanikova Inna P.ORCID

Abstract

Bacteria make a huge contribution to the purification of the environment from toxic stable pollutants of anthropogenic and natural origin due to the diversity of their enzyme systems. For example, the ability to decompose 3-chlorobenzoate (3CBA) by the four representative genera of Actinobacteria, such as Rhodococcus, Gordonia, Microbacterium, and Arthrobacter, was studied. In most cases, the formation of 4-chlorocatechol as the only key intermediate during the decomposition of 3CBA was observed. However, Rhodococcus opacus strain 1CP was an exception, whose cells decomposed 3CBA via both 3-chloro- and 4-chlorocatechol. The enzyme 3-Chlorobenzoate 1,2-dioxygenase (3CBDO) induced during the growth of these bacteria in the presence of 3CBA differed significantly in substrate specificity from the benzoate dioxygenases induced upon growth in the presence of benzoate. The R. opacus 6a strain was found to contain genes encoding chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase, whose nucleotide sequence was 100% consistent with the sequences of the corresponding genes encoding the enzymes of the modified 4-chlorocatechol ortho-cleavage pathway of the strain R. opacus 1CP. However, the gene encoding chloromuconolactone dehalogenase (clcF) was not found in the representatives of the actinomycete genera, including Gordonia and Arthrobacter. A linear mega-plasmid carrying 3-chlorocatechol degradation genes remained stable after maintaining the R. opacus 1CP strain on an agar-rich medium for 25 years. In general, a similar plasmid was absent in actinobacteria of other genera, as well as in closely related species of R. opacus 6a.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference38 articles.

1. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review;Ghosal;Front. Microbiol.,2016

2. Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4;Khleifat;Biocatal. Biotransform.,2018

3. Genomic analysis of the aromatic catabolic pathways from Silicibacter pomeroyi DSS-3;Yan;Ann. Microbiol.,2009

4. Hierarchy of Carbon Source Utilization in Soil Bacteria: Hegemonic Preference for Benzoate in Complex Aromatic Compound Mixtures Degraded by Cupriavidus pinatubonensis Strain JMP134;Donoso;Appl. Environ. Microbiol.,2015

5. Ecosystem-specific selection pressures revealed through comparative population genomics;Coleman;Proc. Natl. Acad. Sci. USA,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3