Identification of a New Pathogenic fungi Causing Sorghum Leaf Spot Disease and Its Management Using Natural Product and Microorganisms

Author:

Wei Guoyu1,Zhao Wei1,Hu Anlong1ORCID,Ren Mingjian1,Huang Yunxiao1,Xu Huayang1

Affiliation:

1. College of Agriculture, Guizhou University, Guiyang 550025, China

Abstract

Sorghum bicolor is cultivated worldwide. Leaf spot of sorghum, which leads to leaf lesions and yield reduction, is a prevalent and serious disease in Guizhou Province, southwest China. In August 2021, new leaf spot symptoms were observed on sorghum leaves. In this study, traditional methods and modern molecular biology techniques were used to isolate and identify the pathogen. Sorghum inoculated with the isolate GY1021 resulted in reddish brown lesion that similar to symptoms observed in the field: the original isolate inoculated was reisolated and Koch’s postulates were fulfilled. Based on morphological features and phylogenetic analysis of the internal transcribed spacer (ITS) combined sequence with β-tubulin (TUB2) and translation elongation factor 1-α (TEF-1α) genes, the isolate was identified as Fusarium thapsinum (Strain accession: GY 1021; GenBank Accession: ITS (ON882046), TEF-1α (OP096445), and β-TUB (OP096446)). Then, we studied the bioactivity of various natural products and microorganisms against F. thapsinum using the dual culture experiment. Carvacrol, 2-allylphenol, honokiol, and cinnamaldehyde showed excellent antifungal activity, with EC50 values of 24.19, 7.18, 46.18, and 52.81 µg/mL, respectively. The bioactivity of six antagonistic bacteria was measured using a dual culture experiment and the mycelial growth rate method. Paenibacillus polymyxa, Bacillus amyloliquefaciens and Bacillus velezensis displayed significant antifungal effects against F. thapsinum. This study provides a theoretical basis for the green control of leaf spot of sorghum.

Funder

Guizhou Province High-level Innovative Talent Project

Guizhou Provincial Department of Finance, Guizhou Provincial Department of Industry and Information Technology

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3