Blood Stream Microbiota Dysbiosis Establishing New Research Standards in Cardio-Metabolic Diseases, A Meta-Analysis Study

Author:

Ullah Goraya Mohsan1ORCID,Li Rui1,Gu Liming1ORCID,Deng Huixiong1,Wang Gefei1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China

Abstract

Aims: Scientists have recently discovered a link between the circulating microbiome and homeostasis, as well as the pathogenesis of a number of metabolic diseases. It has been demonstrated that low-grade chronic inflammation is one of the primary mechanisms that has long been implicated in the risk of cardio-metabolic disease (CMDs) and its progression. Currently, the dysbiosis of circulating bacteria is considered as a key regulator for chronic inflammation in CMDs, which is why we have conducted this systemic review focused on circulating bacterial dysbiosis. Methods: A systemic review of clinical and research-based studies was conducted via PubMed, Scopus, Medline, and Web of Science. Literature was considered for risk of bias and patterns of intervention effects. A randomized effect model was used to evaluate the dysbiosis of circulating microbiota and clinical outcomes. We conducted a meta-analysis considering the circulating bacteria in both healthy people and people with cardio-metabolic disorders, in reports published mainly from 2008 to 2022, according to the PRISMA guidelines. Results: We searched 627 studies and, after completing the risk of bias and selection, 31 studies comprising of 11,132 human samples were considered. This meta-analysis found that dysbiosis of phyla Proteobacteria, Firmicutes, and Bacteroidetes was associated with metabolic diseases. Conclusions: In most instances, metabolic diseases are linked to higher diversity and elevated bacterial DNA levels. Bacteroides abundance was higher in healthy people than with metabolic disorders. However, more rigorous studies are required to determine the role of bacterial dysbiosis in cardio-metabolic diseases. Understanding the relationship between dysbiosis and cardio-metabolic diseases, we can use the bacteria as therapeutics for the reversal of dysbiosis and targets for therapeutics use in cardio-metabolic diseases. In the future, circulating bacterial signatures can be used as biomarkers for the early detection of metabolic diseases.

Funder

Li Ka Shing Foundation

Natural Science Foundation of Guangdong Province

Shantou Science and Technology Bureau

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3