Carbon and Nutrients from Organic Residues Modulate the Dynamics of Prokaryotic and Fungal Communities

Author:

Lourenço Késia Silva12,Cantarella Heitor2,Kuramae Eiko Eurya13ORCID

Affiliation:

1. Microbial Ecology Department, Netherlands Institute of Ecology (NIOO), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands

2. Soils and Environmental Resources Center, Agronomic Institute of Campinas (IAC), Av. Barão de Itapura 1481, Campinas 13020-902, SP, Brazil

3. Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Abstract

Inputs of carbon (C) and nutrients from organic residues may select specific microbes and shape the soil microbial community. However, little is known about the abiotic filtering of the same residues with different nutrient concentrations applied to the soil. In our study, we explored how applying organic residue, vinasse, as fertilizer in its natural state (V) versus its concentrated form (CV) impacts soil microbiota. We conducted two field experiments, evaluating soil prokaryotic and fungal communities over 24 and 45 days with vinasse (V or CV) plus N fertilizer. We used 16S rRNA gene and ITS amplicon sequencing. Inorganic N had no significant impact on bacterial and fungal diversity compared to the control. However, the varying concentrations of organic C and nutrients in vinasse significantly influenced the soil microbiome structure, with smaller effects observed for V compared to CV. Prokaryotic and fungal communities were not correlated (co-inertia: RV coefficient = 0.1517, p = 0.9708). Vinasse did not change the total bacterial but increased the total fungal abundance. A higher C input enhanced the prokaryotic but reduced the fungal diversity. Our findings highlight vinasse’s role as an abiotic filter shaping soil microbial communities, with distinct effects on prokaryotic and fungal communities. Vinasse primarily selects fast-growing microorganisms, shedding light on the intricate dynamics between organic residues, nutrient concentrations, and soil microbes.

Funder

FAPESP and The Netherlands Organization for Scientific Research

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3