Effects of Resource Availability and Antibiotic Residues on Intestinal Antibiotic Resistance in Bellamya aeruginosa

Author:

Xiao Yayu1,Zhang Peiyu2ORCID,Zhang Huan2,Wang Huan23,Min Guo1,Wang Hongxia2,Wang Yuyu1ORCID,Xu Jun2

Affiliation:

1. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China

2. Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

3. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China

Abstract

Widespread and inappropriate use of antibiotics has been shown to increase the spread of antibiotics and antimicrobial resistance genes (ARGs) in aquatic environments and organisms. Antibiotic use for the treatment of human and animal diseases is increasing continuously globally. However, the effects of legal antibiotic concentrations on benthic consumers in freshwater environments remain unclear. In the present study, we tested the growth response of Bellamya aeruginosa to florfenicol (FF) for 84 days under high and low concentrations of sediment organic matter (carbon [C] and nitrogen [N]). We characterized FF and sediment organic matter impact on the bacterial community, ARGs, and metabolic pathways in the intestine using metagenomic sequencing and analysis. The high concentrations of organic matter in the sediment impacted the growth, intestinal bacterial community, intestinal ARGs, and microbiome metabolic pathways of B. aeruginosa. B. aeruginosa growth increased significantly following exposure to high organic matter content sediment. Proteobacteria, at the phylum level, and Aeromonas at the genus level, were enriched in the intestines. In particular, fragments of four opportunistic pathogens enriched in the intestine of high organic matter content sediment groups, Aeromonas hydrophila, Aeromonas caviae, Aeromonas veronii, and Aeromonas salmonicida, carried 14 ARGs. The metabolic pathways of the B. aeruginosa intestine microbiome were activated and showed a significant positive correlation with sediment organic matter concentrations. In addition, genetic information processing and metabolic functions may be inhibited by the combined exposure to sediment C, N, and FF. The findings of the present study suggest that antibiotic resistance dissemination from benthic animals to the upper trophic levels in freshwater lakes should be studied further.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province, China

National Natural Science Foundations of China

Water Pollution Control and Management Project of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3