Affiliation:
1. Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
2. Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
Abstract
Poultry rendering is the process of upcycling inedible poultry carcass materials into useful animal food/feed components as well as other valuable commercial products. Microbiological safety validation is nonetheless critical to ensuring the prevention of food safety hazard(s) transmission. This study determined the death kinetics of the thermotolerant Salmonella enterica serovar Senftenberg isolate 775W in chicken feathers and blood in low-temperature dry rendering (i.e., no direct contact with heating medium) to validate pathogen inactivation in commercial processing. Chicken feathers and blood were inoculated with Salmonella Senftenberg 775W and heated to 60, 70, or 80 °C for up to 60, 20, and 5 min, respectively. Three identically completed replicates (N = 3) for each product were conducted. Pathogen inactivation data were fitted to a non-linear model, providing for the detection and characterization of shoulder, log-linear death, and tailing components in death curves. The analysis showed a >7-log10 reduction in Salmonella was achieved across all processing temperatures, with t7D values (time for 7.0 log-cycle lethality) ranging from 21.68, 7.30, and 4.26 min for feathers and 18.38, 5.03, and 2.79 min in blood at 60, 70, and 80 °C, respectively. Study findings validate that low-temperature processing conditions can inactivate Salmonella in poultry-rendered offal.
Funder
Fats and Proteins Research Foundation, Inc.
Texas A&M University College of Agriculture and Life Sciences graduate assistant Excellence Fellowship
Subject
Virology,Microbiology (medical),Microbiology