Lethality Validation for Human Pathogenic Salmonella enterica on Chicken Feathers and Blood during Simulated Commercial Low-Temperature Dry Rendering

Author:

Mvuyekure Aime L. Shimwa1ORCID,Moreira Rosana G.2,Taylor Thomas Matthew1ORCID

Affiliation:

1. Department of Animal Science, Texas A&M University, College Station, TX 77843, USA

2. Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA

Abstract

Poultry rendering is the process of upcycling inedible poultry carcass materials into useful animal food/feed components as well as other valuable commercial products. Microbiological safety validation is nonetheless critical to ensuring the prevention of food safety hazard(s) transmission. This study determined the death kinetics of the thermotolerant Salmonella enterica serovar Senftenberg isolate 775W in chicken feathers and blood in low-temperature dry rendering (i.e., no direct contact with heating medium) to validate pathogen inactivation in commercial processing. Chicken feathers and blood were inoculated with Salmonella Senftenberg 775W and heated to 60, 70, or 80 °C for up to 60, 20, and 5 min, respectively. Three identically completed replicates (N = 3) for each product were conducted. Pathogen inactivation data were fitted to a non-linear model, providing for the detection and characterization of shoulder, log-linear death, and tailing components in death curves. The analysis showed a >7-log10 reduction in Salmonella was achieved across all processing temperatures, with t7D values (time for 7.0 log-cycle lethality) ranging from 21.68, 7.30, and 4.26 min for feathers and 18.38, 5.03, and 2.79 min in blood at 60, 70, and 80 °C, respectively. Study findings validate that low-temperature processing conditions can inactivate Salmonella in poultry-rendered offal.

Funder

Fats and Proteins Research Foundation, Inc.

Texas A&M University College of Agriculture and Life Sciences graduate assistant Excellence Fellowship

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3