Assessing Freshwater Microbiomes from Different Storage Sources in the Caribbean Using DNA Metabarcoding

Author:

Cross Joseph12,Honnavar Prasanna3ORCID,Quidet Xegfred Lou T.4,Butler Travis4,Shivaprasad Aparna3,Christian Linroy5

Affiliation:

1. Department of Biochemistry, Cell Biology and Genetics, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda

2. Department of Microbial Pathogenesis and Immunology, Texas A&M University School of Medicine, College Station, TX 77843, USA

3. Department of Microbiology and Immunology, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda

4. Basic Medical Sciences, American University of Antigua College of Medicine, St. Johns 1451, Antigua and Barbuda

5. Department of Analytical Services, St. Johns 1451, Antigua and Barbuda

Abstract

Next-generation sequencing (NGS) and the technique of DNA metabarcoding have provided more efficient and comprehensive options for testing water quality compared to traditional methods. Recent studies have shown the efficacy of DNA metabarcoding in characterizing the bacterial microbiomes of varied sources of drinking water, including rivers, reservoirs, wells, tanks, and lakes. We asked whether DNA metabarcoding could be used to characterize the microbiome of different private sources of stored freshwater on the Caribbean Island nation of Antigua and Barbuda. Two replicate water samples were obtained from three different private residential sources in Antigua: a well, an above-ground tank, and a cistern. The bacterial microbiomes of different freshwater sources were assessed using 16S rRNA metabarcoding. We measured both alpha diversity (species diversity within a sample) and beta diversity (species diversity across samples) and conducted a taxonomic analysis. We also looked for the presence of potentially pathogenic species. Major differences were found in the microbiome composition and relative abundances depending on the water source. A lower alpha diversity was observed in the cistern sample compared to the others, and distinct differences in the microbiome composition and relative abundance were noted between the samples. Notably, pathogenic species, or genera known to harbor such species, were detected in all the samples. We conclude that DNA metabarcoding can provide an effective and comprehensive assessment of drinking water quality and has the potential to identify pathogenic species overlooked using traditional methods. This method also shows promise for tracing the source of disease outbreaks due to waterborne microorganisms. This is the first study from small island countries in the Caribbean where metabarcoding has been applied for assessing freshwater water quality.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3