Influence of Extremely High Pressure and Oxygen on Hydrocarbon-Enriched Microbial Communities in Sediments from the Challenger Deep, Mariana Trench

Author:

Liu Ying1,Chen Songze2,Xie Zhe1,Zhang Li1,Wang Jiahua1,Fang Jiasong134

Affiliation:

1. Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai 200120, China

2. Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518000, China

3. Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China

4. Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA

Abstract

Recent studies reported that highly abundant alkane content exists in the ~11,000 m sediment of the Mariana Trench, and a few key alkane-degrading bacteria were identified in the Mariana Trench. At present, most of the studies on microbes for degrading hydrocarbons were performed mainly at atmospheric pressure (0.1 MPa) and room temperature; little is known about which microbes could be enriched with the addition of n-alkanes under in-situ environmental pressure and temperature conditions in the hadal zone. In this study, we conducted microbial enrichments of sediment from the Mariana Trench with short-chain (SCAs, C7–C17) or long-chain (LCAs, C18–C36) n-alkanes and incubated them at 0.1 MPa/100 MPa and 4 °C under aerobic or anaerobic conditions for 150 days. Microbial diversity analysis showed that a higher microbial diversity was observed at 100 MPa than at 0.1 MPa, irrespective of whether SCAs or LCAs were added. Non-metric multidimensional scaling (nMDS) and hierarchical cluster analysis revealed that different microbial clusters were formed according to hydrostatic pressure and oxygen. Significantly different microbial communities were formed according to pressure or oxygen (p < 0.05). For example, Gammaproteobacteria (Thalassolituus) were the most abundant anaerobic n-alkanes-enriched microbes at 0.1 MPa, whereas the microbial communities shifted to dominance by Gammaproteobacteria (Idiomarina, Halomonas, and Methylophaga) and Bacteroidetes (Arenibacter) at 100 MPa. Compared to the anaerobic treatments, Actinobacteria (Microbacterium) and Alphaproteobacteria (Sulfitobacter and Phenylobacterium) were the most abundant groups with the addition of hydrocarbon under aerobic conditions at 100 MPa. Our results revealed that unique n-alkane-enriched microorganisms were present in the deepest sediment of the Mariana Trench, which may imply that extremely high hydrostatic pressure (100 MPa) and oxygen dramatically affected the processes of microbial-mediated alkane utilization.

Funder

National Natural Science Foundation of China

Laboratory for Marine Biology and Biotechnology

Pilot National Laboratory for Marine Science and Technology

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3