Active Sulfate-Reducing Bacterial Community in the Camel Gut

Author:

Karnachuk Olga V.1ORCID,Panova Inna A.1,Panov Vasilii L.1,Ikkert Olga P.1,Kadnikov Vitaly V.2,Rusanov Igor I.3,Avakyan Marat R.1,Glukhova Lubov B.1ORCID,Lukina Anastasia P.1,Rakitin Anatolii V.1,Begmatov Shahjahon2ORCID,Beletsky Alexey V.2,Pimenov Nikolai V.3,Ravin Nikolai V.2ORCID

Affiliation:

1. Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia

2. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, 119071 Moscow, Russia

3. Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia

Abstract

The diversity and activity of sulfate-reducing bacteria (SRB) in the camel gut remains largely unexplored. An abundant SRB community has been previously revealed in the feces of Bactrian camels (Camelus bactrianus). This study aims to combine the 16S rRNA gene profiling, sulfate reduction rate (SRR) measurement with a radioactive tracer, and targeted cultivation to shed light on SRB activity in the camel gut. Fresh feces of 55 domestic Bactrian camels grazing freely on semi-arid mountain pastures in the Kosh-Agach district of the Russian Altai area were analyzed. Feces were sampled in early winter at an ambient temperature of −15 °C, which prevented possible contamination. SRR values measured with a radioactive tracer in feces were relatively high and ranged from 0.018 to 0.168 nmol S cm−3 day−1. The 16S rRNA gene profiles revealed the presence of Gram-negative Desulfovibrionaceae and spore-forming Desulfotomaculaceae. Targeted isolation allowed us to obtain four pure culture isolates belonging to Desulfovibrio and Desulforamulus. An active SRB community may affect the iron and copper availability in the camel intestine due to metal ions precipitation in the form of sparingly soluble sulfides. The copper-iron sulfide, chalcopyrite (CuFeS2), was detected by X-ray diffraction in 36 out of 55 analyzed camel feces. In semi-arid areas, gypsum, like other evaporite sulfates, can be used as a solid-phase electron acceptor for sulfate reduction in the camel gastrointestinal tract.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3