An Alternative Platform for Protein Expression Using an Innate Whole Expression Module from Metagenomic DNA

Author:

Cheong Dae-Eun,Park So-Youn,Lim Ho-Dong,Kim Geun-Joong

Abstract

Many integrated gene clusters beyond a single genetic element are commonly trapped as the result of promoter traps in (meta)genomic DNA libraries. Generally, a single element, which is mainly the promoter, is deduced from the resulting gene clusters and employed to construct a new expression vector. However, expression patterns of target proteins under the incorporated promoter are often inconsistent with those shown in clones harboring plasmids with gene clusters. These results suggest that the integrated set of gene clusters with diverse cis- and trans-acting elements is evolutionarily tuned as a complete set for gene expression, and is an expression module with all the components for the expression of a nested open reading frame (ORF). This possibility is further supported by truncation and/or serial deletion analysis of this module in which the expression of the nested ORF is highly fluctuated or reduced frequently, despite being supported by plentiful cis-acting elements in the spanning regions around the ORF such as the promoter, ribosome binding site (RBS), terminator, and 3′-/5′-UTRs for gene expression. Here, we examined whether an innate module with a naturally overexpressed gene could be considered as a scaffold for an expression system. For a proof-of-principle study, we mined a complete expression module with an innately overexpressed ORF in E. coli from a metagenomics DNA library, and incorporated it into a vector that had no regulatory element for expressing the insert. We obtained successful expression of several inserts such as MBP, GFPuv, β-glucosidase, and esterase using this simple construct without tuning and codon optimization of the target insert.

Funder

The Intelligent Synthetic Biology Center program of the National Research Foundation (NRF) funded by the Ministry of Science

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3