Long-Term Biogas Production from Glycolate by Diverse and Highly Dynamic Communities

Author:

Günther Susanne,Becker Daniela,Hübschmann Thomas,Reinert Susann,Kleinsteuber SabineORCID,Müller Susann,Wilhelm Christian

Abstract

Generating chemical energy carriers and bulk chemicals from solar energy by microbial metabolic capacities is a promising technology. In this long-term study of over 500 days, methane was produced by a microbial community that was fed by the mono-substrate glycolate, which was derived from engineered algae. The microbial community structure was measured on the single cell level using flow cytometry. Abiotic and operational reactor parameters were analyzed in parallel. The R-based tool flowCyBar facilitated visualization of community dynamics and indicated sub-communities involved in glycolate fermentation and methanogenesis. Cell sorting and amplicon sequencing of 16S rRNA and mcrA genes were used to identify the key organisms involved in the anaerobic conversion process. The microbial community allowed a constant fermentation, although it was sensitive to high glycolate concentrations in the feed. A linear correlation between glycolate loading rate and biogas amount was observed (R2 = 0.99) for glycolate loading rates up to 1.81 g L−1 day−1 with a maximum in biogas amount of 3635 mL day−1 encompassing 45% methane. The cytometric diversity remained high during the whole cultivation period. The dominating bacterial genera were Syntrophobotulus, Clostridia genus B55_F, Aminobacterium, and Petrimonas. Methanogenesis was almost exclusively performed by the hydrogenotrophic genus Methanobacterium.

Funder

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Energie

Fachagentur Nachwachsende Rohstoffe

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3