Biosulfidogenesis Mediates Natural Attenuation in Acidic Mine Pit Lakes

Author:

van der Graaf Charlotte M.,Sánchez-España Javier,Yusta Iñaki,Ilin Andrey,Shetty Sudarshan A.,Bale Nicole J.,Villanueva Laura,Stams Alfons J. M.,Sánchez-Andrea Irene

Abstract

Acidic pit lakes are abandoned open pit mines filled with acid mine drainage (AMD)—highly acidic, metalliferous waters that pose a severe threat to the environment and are rarely properly remediated. Here, we investigated two meromictic, oligotrophic acidic mine pit lakes in the Iberian Pyrite Belt (IPB), Filón Centro (Tharsis) (FC) and La Zarza (LZ). We observed a natural attenuation of acidity and toxic metal concentrations towards the lake bottom, which was more pronounced in FC. The detection of Cu and Zn sulfides in the monimolimnion of FC suggests precipitation of dissolved metals as metal sulfides, pointing to biogenic sulfide formation. This was supported by microbial diversity analysis via 16S rRNA gene amplicon sequencing of samples from the water column, which showed the presence of sulfidogenic microbial taxa in FC and LZ. In the monimolimnion of FC, sequences affiliated with the putative sulfate-reducing genus Desulfomonile were dominant (58%), whereas in the more acidic and metal-enriched LZ, elemental sulfur-reducing Acidianus and Thermoplasma spp., and disproportionating Desulfocapsa spp. were more abundant. Furthermore, the detection of reads classified as methanogens and Desulfosporosinus spp., although at low relative abundance, represents one of the lowest pH values (2.9 in LZ) at which these taxa have been reported, to our knowledge. Analysis of potential biomarker lipids provided evidence that high levels of phosphocholine lipids with mixed acyl/ether glycerol core structures were associated with Desulfomonile, while ceramide lipids were characteristic of Microbacter in these environments. We propose that FC and LZ function as natural bioremediation reactors where metal sulfide precipitation is mediated by biosulfidogenesis starting from elemental sulfur reduction and disproportionation at an early stage (LZ), followed by sulfate reduction at a later stage (FC).

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Ministerie van Onderwijs, Cultuur en Wetenschap

H2020 European Research Council

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3