A Rapid, Sensitive, Low-Cost Assay for Detecting Hydrogenotrophic Methanogens in Anaerobic Digesters Using Loop-Mediated Isothermal Amplification

Author:

Alessi Anna M.ORCID,Tao BingORCID,Zhang Wei,Zhang YueORCID,Heaven Sonia,Banks Charles J.,Chong James P. J.ORCID

Abstract

Understanding how the presence, absence, and abundance of different microbial genera supply specific metabolic functions for anaerobic digestion (AD) and how these impact on gas production is critical for a long-term understanding and optimization of the AD process. The strictly anaerobic methanogenic archaea are essential for methane production within AD microbial communities. Methanogens are a phylogenetically diverse group that can be classified into three metabolically distinct lineages based on the substrates they use to produce methane. While process optimization based on physicochemical parameters is well established in AD, measurements that could allow manipulation of the underlying microbial community are seldom used as they tend to be non-specific, expensive, or time-consuming, or a combination of all three. Loop-mediated isothermal amplification (LAMP) assays combine a simple, rapid, low-cost detection technique with high sensitivity and specificity. Here, we describe the optimization of LAMP assays for the detection of four different genera of hydrogenotrophic methanogens: Methanoculleus, Methanothermobacter, Methanococcus, and Methanobrevibacter spp. By targeting archaeal elongation factor 2 (aEF2), these LAMP assays provide a rapid, low-cost, presence/absence indication of hydrogenotrophic methanogens that could be used as a real-time measure of process conditions. The assays were shown to be sensitive to 1 pg of DNA from most tested methanogen species, providing a route to a quantitative measure through simple serial dilution of samples. The LAMP assays described here offer a simple, fast, and affordable method for the specific detection of four different genera of hydrogenotrophic methanogens. Our results indicate that this approach could be developed into a quantitative measure that could provide rapid, low-cost insight into the functioning and optimization of AD and related systems.

Funder

Engineering and Physical Sciences Research Council

Royal Society

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3