Abstract
Sustainable economy drives increasing demand for raw biomass-decomposing enzymes. Microbial expression platforms exploited as cellular factories of such biocatalysts meet requirements of large-volume production. Previously, we developed Yarrowia lipolytica recombinant strains able to grow on raw starch of different plant origin. In the present study, we used the most efficient amylolytic strain as a microbial cell factory of raw-starch-digesting (RSD) amylolytic preparation composed of two enzymes. The RSD-preparation was produced in fed-batch bioreactor cultures. Concentrated and partly purified preparation was then tested in simultaneous saccharification and fermentation (SSF) processes with thermotolerant Kluyveromyces marxianus for ethanol production and Lactobacillus plantarum for production of lactic acid. These processes were conducted as a proof-of-concept that application of the novel RSD-preparation supports sufficient starch hydrolysis enabling microbial growth and production of targeted molecules, as the selected strains were confirmed to lack amylolytic activity. Doses of the preparation and thermal conditions were individually adjusted for the two processes. Additionally, ethanol production was tested under different aeration strategies; and lactic acid production process was tested in thermally pre-treated substrate, as well. Conducted studies demonstrated that the novel RSD-preparation provides satisfactory starch hydrolyzing activity for ethanol and lactic acid production from starch by non-amylolytic microorganisms.
Subject
Virology,Microbiology (medical),Microbiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献