A Plasmid-Encoded FetMP-Fls Iron Uptake System Confers Selective Advantages to Salmonella enterica Serovar Typhimurium in Growth under Iron-Restricted Conditions and for Infection of Mammalian Host Cells

Author:

García VanesaORCID,Herrero-Fresno Ana,Rodicio Rosaura,Felipe-López Alfonso,Montero IgnacioORCID,Olsen John E.ORCID,Hensel Michael,Rodicio María Rosario

Abstract

The resistance plasmid pUO-StVR2, derived from virulence plasmid pSLT, is widespread in clinical isolates of Salmonella enterica serovar Typhimurium recovered in Spain and other European countries. pUO-StVR2 carries several genes encoding a FetMP-Fls system, which could be involved in iron uptake. We therefore analyzed S. Typhimurium LSP 146/02, a clinical strain selected as representative of the isolates carrying the plasmid, and an otherwise isogenic mutant lacking four genes (fetMP-flsDA) of the fetMP-fls region. Growth curves and determination of the intracellular iron content under iron-restricted conditions demonstrated that deletion of these genes impairs iron acquisition. Thus, under these conditions, the mutant grew significantly worse than the wild-type strain, its iron content was significantly lower, and it was outcompeted by the wild-type strain in competition assays. Importantly, the strain lacking the fetMP-flsDA genes was less invasive in cultured epithelial HeLa cells and replicated poorly upon infection of RAW264.7 macrophages. The genes were introduced into S. Typhimurium ATCC 14028, which lacks the FetMP-Fls system, and this resulted in increased growth under iron limitation as well as an increased ability to multiply inside macrophages. These findings indicate that the FetMP-Fls iron acquisition system exceeds the benefits conferred by the other high-affinity iron uptake systems carried by ATCC 14028 and LSP 146/02. We proposed that effective iron acquisition by this system in conjunction with antimicrobial resistance encoded from the same plasmid have greatly contributed to the epidemic success of S. Typhimurium isolates harboring pUO-StVR2.

Funder

Instituto de Salud Carlos III

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3