Enhancing the Rice Seedlings Growth Promotion Abilities of Azoarcus sp. CIB by Heterologous Expression of ACC Deaminase to Improve Performance of Plants Exposed to Cadmium Stress

Author:

Fernández-Llamosas Helga,Ibero Juan,Thijs SofieORCID,Imperato ValeriaORCID,Vangronsveld JacoORCID,Díaz Eduardo,Carmona ManuelORCID

Abstract

Environmental pollutants can generate stress in plants causing increased ethylene production that leads to the inhibition of plant growth. Ethylene production by the stressed plant may be lowered by Plant Growth-Promoting Bacteria (PGPB) that metabolizes the immediate precursor of ethylene 1-aminocyclopropane-1-carboxylate (ACC). Thus, engineering PGPB with ACC deaminase activity can be a promising alternative to mitigate the harmful effects of pollutants and thus enhance plant production. Here we show that the aromatics-degrading and metal-resistant Azoarcus sp. CIB behaves as a PGP-bacterium when colonizing rice as an endophyte, showing a 30% increment in plant weight compared to non-inoculated plants. The cloning and expression of an acdS gene led to a recombinant strain, Azoarcus sp. CIB (pSEVA237acdS), possessing significant ACC deaminase activity (6716 nmol mg−1 h−1), constituting the first PGPB of the Rhodocyclaceae family equipped with this PGP trait. The recombinant CIB strain acquired the ability to protect inoculated rice plants from the stress induced by cadmium (Cd) exposure and to increase the Cd concentration in rice seedlings. The observed decrease of the levels of reactive oxygen species levels in rice roots confirms such a protective effect. The broad-host-range pSEVA237acdS plasmid paves the way to engineer PGPB with ACC deaminase activity to improve the growth of plants that might face stress conditions.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3