Molecular Characterization and Antimicrobial Susceptibilities of Nocardia Species Isolated from the Soil; A Comparison with Species Isolated from Humans

Author:

Carrasco Gema,Monzón Sara,San Segundo María,García Enrique,Garrido Noelia,Medina-Pascual María J.,Villalón PilarORCID,Ramírez Ana,Jiménez Pilar,Cuesta Isabel,Valdezate SylviaORCID

Abstract

Nocardia species, one of the most predominant Actinobacteria of the soil microbiota, cause infection in humans following traumatic inoculation or inhalation. The identification, typing, phylogenetic relationship and antimicrobial susceptibilities of 38 soil Nocardia strains from Lara State, Venezuela, were studied by 16S rRNA and gyrB (subunit B of topoisomerase II) genes, multilocus sequence analysis (MLSA), whole-genome sequencing (WGS), and microdilution. The results were compared with those for human strains. Just seven Nocardia species with one or two strains each, except for Nocardia cyriacigeorgica with 29, were identified. MLSA confirmed the species assignments made by 16S rRNA and gyrB analyses (89.5% and 71.0% respectively), and grouped each soil strain with its corresponding reference and clinical strains, except for 19 N. cyriacigeorgica strains found at five locations which grouped into a soil-only cluster. The soil strains of N. cyriacigeorgica showed fewer gyrB haplotypes than the examined human strains (13 vs. 17) but did show a larger number of gyrB SNPs (212 vs. 77). Their susceptibilities to antimicrobials were similar except for beta-lactams, fluoroquinolones, minocycline, and clarithromycin, with the soil strains more susceptible to the first three (p ≤ 0.05). WGS was performed on four strains belonging to the soil-only cluster and on two outside it, and the results compared with public N. cyriacigeorgica genomes. The average nucleotide/amino acid identity, in silico genome-to-genome hybridization similarity, and the difference in the genomic GC content, suggest that some strains of the soil-only cluster may belong to a novel subspecies or even a new species (proposed name Nocardia venezuelensis).

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3