Abstract
USA300 is a predominant community-associated methicillin-resistant Staphylococcus aureus strain which carries an arginine catabolic mobile element (ACME). ACME contains potential virulence factors including an arginine deiminase (arc) pathway and an oligopeptide permease (opp-3) system, which are proposed to play a role in bacterial virulence and transmission. However, the role of ACME in evolution and pathogenicity of USA300 remains to be elucidated. ACME and arcA deletion mutants were created by allelic replacement from a USA300 clinical isolate. By comparing wild type and isogenic ACME deletion USA300 strains, ACME was shown not to contribute to bacterial survival on plastic surfaces, and mouse skin surfaces. ACME did not contribute to bacterial virulence in cell invasion and cytotoxicity assays, invertebrate killing assays and a mouse skin infection model. Wild-type ACME negative USA300 clinical isolates showed similar associations with invasive anatomic sites as ACME positive isolates. Our experiments also demonstrated that ACME can spontaneously excise from the bacterial chromosome to generate an ACME deletion strain at a low frequency. Our results do not support that the ACME element alone is a significant factor in the transmission and virulence of USA300 strain, and ACME may have been coincidently incorporated into the genome of USA300.
Funder
Banting Research Foundation
Alberta Health Services
Subject
Virology,Microbiology (medical),Microbiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献