Shared Extended-Spectrum β-Lactamase-Producing Salmonella Serovars between Agricultural and Aquatic Environments Revealed through invA Amplicon Sequencing

Author:

Raseala Cecilia Mahlatse,Ekwanzala Mutshiene DeogratiasORCID,Momba Maggy Ndombo BentekeORCID

Abstract

The presence of antibiotic-resistant Salmonella spp. in the environment is of great public health interest, worldwide. Furthermore, its extended-spectrum β-lactamase (ESBL)-producing strains constitute an emerging global health concern due to their limited treatment options in hospital. Therefore, this study aimed at characterising and tracking nonresistant and ESBL–producing Salmonella spp. from agricultural settings to nearby water sources highlighting their antibiotic resistance genes (ARG) and virulence factor (VF) distribution using a combination of both culture-dependent and independent methods. Furthermore, this study investigated the diversity and shared serovars among sampled matrices using amplicon sequencing of the invasion gene A (invA) of Salmonella spp. The results showed that soil had the highest prevalence of Salmonella spp. (62.5%, 65/104) and ESBL-producing Salmonella (34.6%, 36/104). For typed ARG, the most commonly detected gene was blaOXA with 75% (30/40), followed by blaCTX-M 67.5% (27/40),blaTEM 40% (16/40) and sul1 30% (12/40) gene; blaSHV gene was not detected in isolated ESBL-producing Salmonella spp. For VF, the most detected gene was invA (96.9%, 38/40), followed by spaM (17.5%, 7/40), spiC (40%, 16/40), orfL (32.5%, 13/40), misL 32.5% (13/40) and pipD 32.5 (13/40). For diversity analysis, soil, manure, irrigation water and nearby freshwater revealed 81, 68, 12 and 9 serovars, respectively. Soil, manure, irrigation water and freshwater stream samples shared five serovars, which indicated circulation of ESBL-producing Salmonella spp. within the agricultural environment and nearby water sources. Soil is therefore identified as one of the major reservoirs of ESBL-producing Salmonella spp. It is concluded that agricultural environment contamination may have a direct relationship with the presence of antibiotic-producing Salmonella in freshwater streams.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3