Evaluation of Recommended Water Sample Collection Methods and the Impact of Holding Time on Legionella Recovery and Variability from Healthcare Building Water Systems

Author:

Hirsh Marisa B.,Baron Julianne L.,Mietzner Sue M.,Rihs John D.,Yassin Mohamed H.ORCID,Stout Janet E.

Abstract

Water safety and management programs (WSMP) utilize field measurements to evaluate control limits and monitor water quality parameters including Legionella presence. This monitoring is important to verify that the plan is being implemented properly. However, once it has been determined when and how to sample for Legionella, it is important to choose appropriate collection and processing methods. We sought to compare processing immediate and flushed samples, filtration of different volumes collected, and sample hold times. Hot water samples were collected immediately and after a 2-min flush. These samples were plated directly and after filtration of either 100 mL, 200 mL, or 1 L. Additionally, unflushed samples were collected and processed immediately and after 1, 24, and 48 h of hold time. We found that flushed samples had significant reductions in Legionella counts compared to immediate samples. Processing 100 mL of that immediate sample both directly and after filter concentration yielded the highest concentration and percent sample positivity, respectively. We also show that there was no difference in culture values from time 0 compared to hold times of 1 h and 24 h. At 48 h, there were slightly fewer Legionella recovered than at time 0. However, Legionella counts were so variable based on sampling location and date that this hold time effect was minimal. The interpretation of Legionella culture results depends on the sample collection and processing methods used, as these can have a huge impact on the success of sampling and the validation of control measures.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3