Early Intracellular Trafficking and Subsequent Activity of Programmed Cell Death in Channel Catfish Macrophages Infected with Edwardsiella ictaluri

Author:

Dubytska Lidiya P.ORCID,Thune Ronald L.

Abstract

The development of Edwardsiella-containing-vacuoles (ECV) and the ability of Edwardsiella ictaluri to survive and replicate within macrophages suggests a unique process relative to normal phagosomal/lysosomal maturation and programed cell death. Developing ECV showed that endosomal membrane markers Rab5, EEA1, and Rab7 were all detected in both the wild type (WT) and an E. ictaluri type-3 secretion system (T3SS) mutant, 65ST. Co-localization with Lamp1, however, was significantly lower in the WT. The host cell endoplasmic reticulum marker, calnexin, co-localized to 65ST ECV significantly more than WT ECV, while Golgi vesicle marker, giantin, was recruited to WT ECV significantly more than 65ST. The autophagosomal marker LC3 was significantly lower in WT than in 65ST and Western blotting demonstrated significantly greater induction of the membrane localized, lipidated form, LC3-II, in 65ST ECV than in WT ECV. Activity of the apoptosis initiator caspase-8 increased post-infection in 65ST and was significantly lower in WT-infected cells. Executioner caspase-3/7 activity also increased significantly in 65ST-infected cells compared to WT-infected cells. Repression of apoptosis was further demonstrated with flow cytometry using Alexa Fluor 647-labeled Annexin V and propidium iodide. Results indicate that WT ECV fused with early and late endosomes but that phagosomal/lysosomal fusion did not occur. Additionally, WT-infected cells recruited Golgi vesicles for vacuolar size increase and bacterial growth material, and both autophagy and apoptosis were repressed in the WT. This activity was all based on the function of the E. ictaluri T3SS.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3