Driver Fatigue Detection Systems Using Multi-Sensors, Smartphone, and Cloud-Based Computing Platforms: A Comparative Analysis

Author:

Abbas Qaisar,Alsheddy Abdullah

Abstract

Internet of things (IoT) cloud-based applications deliver advanced solutions for smart cities to decrease traffic accidents caused by driver fatigue while driving on the road. Environmental conditions or driver behavior can ultimately lead to serious roadside accidents. In recent years, the authors have developed many low-cost, computerized, driver fatigue detection systems (DFDs) to help drivers, by using multi-sensors, and mobile and cloud-based computing architecture. To promote safe driving, these are the most current emerging platforms that were introduced in the past. In this paper, we reviewed state-of-the-art approaches for predicting unsafe driving styles using three common IoT-based architectures. The novelty of this article is to show major differences among multi-sensors, smartphone-based, and cloud-based architectures in multimodal feature processing. We discussed all of the problems that machine learning techniques faced in recent years, particularly the deep learning (DL) model, to predict driver hypovigilance, especially in terms of these three IoT-based architectures. Moreover, we performed state-of-the-art comparisons by using driving simulators to incorporate multimodal features of the driver. We also mention online data sources in this article to test and train network architecture in the field of DFDs on public available multimodal datasets. These comparisons assist other authors to continue future research in this domain. To evaluate the performance, we mention the major problems in these three architectures to help researchers use the best IoT-based architecture for detecting DFDs in a real-time environment. Moreover, the important factors of Multi-Access Edge Computing (MEC) and 5th generation (5G) networks are analyzed in the context of deep learning architecture to improve the response time of DFD systems. Lastly, it is concluded that there is a research gap when it comes to implementing the DFD systems on MEC and 5G technologies by using multimodal features and DL architecture.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3