Aboveground Biomass Inversion Based on Object-Oriented Classification and Pearson–mRMR–Machine Learning Model

Author:

Chen Xinyang1,Yang Keming1,Ma Jun2,Jiang Kegui1,Gu Xinru1,Peng Lishun1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. General Defense Geological Survey Department, Huaibei Mining Co., Ltd., Huaibei 235000, China

Abstract

Cities play a crucial role in the carbon cycle. Measuring urban aboveground biomass (AGB) is essential for evaluating carbon sequestration. Satellite remote sensing enables large-scale AGB inversion. However, the apparent differences between forest and grassland biomass pose a significant challenge to the accurate estimation of urban AGB using satellite-based data. To address this limitation, this study proposed a novel AGB estimation method using the eastern part of the Zhahe mining area in Huaibei City as the study area, which integrates land cover classification, feature selection, and machine learning modelling to generate high quality biomass maps of different vegetation types in an urban area with complex feature distribution. Utilizing the GEE platform and Sentinel-2 image, we developed an object-oriented machine learning classification algorithm, combining SNIC and GLCM to extract vegetation information. Optimal feature variables for forest and crop-grass AGB inversion were selected using the Pearson–mRMR algorithm. Finally, we constructed nine machine learning models for AGB inversion and selected the model with the highest accuracy to generate the AGB map of the study area. The results of the study are as follows: (1) Compared with the pixel-based classification method, the object-oriented classification method can extract the boundaries of different vegetation types more accurately. (2) Forest AGB is strongly correlated with vegetation indices and physiological parameters, while agri-grass AGB is primarily associated with vegetation indices and vegetation physiological parameters. (3) For forest AGB modelling, the RF-R model outperforms other machine learning models with an R2 of 0.77. For agri-grass AGB modelling, the XGBoost-R model is more accurate, with an R2 of 0.86. (4) The mean forest AGB in the study area was 4.60 kg/m2, while the mean agri-grass AGB was 0.71 kg/m2. High AGB values were predominantly observed in forested areas, which were mainly distributed along roads, waterways, and mountain ranges. Overall, this study contributes to a better understanding of the health of local urban ecosystems and provides valuable insights for ecosystem protection and the sustainable use of natural resources.

Funder

Science & Technology Fundamental Resources Investigation Program

Research Project of Huaibei Mining Co., Ltd.

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3