A Hierarchical Heuristic Architecture for Unmanned Aerial Vehicle Coverage Search with Optical Camera in Curve-Shape Area

Author:

Liu Lanjun1ORCID,Wang Dechuan1,Yu Jiabin23ORCID,Yao Peng1,Zhong Chen1,Fu Dongfei1

Affiliation:

1. College of Engineering, Ocean University of China, Qingdao 266100, China

2. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

3. Key Laboratory of Industrial Internet and Big Data, China National Light Industry, Beijing 100048, China

Abstract

This paper focuses on the problem of dynamic target search in a curve-shaped area by an unmanned aerial vehicle (UAV) with an optical camera. Our objective is to generate an optimal path for UAVs to obtain the maximum detection reward by a camera in the shortest possible time, while satisfying the constraints of maneuverability and obstacle avoidance. First, based on prior qualitative information, the original target probability map for the curve-shaped area is modeled by Parzen windows with 1-dimensional Gaussian kernels, and then several high-value curve segments are extracted by density-based spatial clustering of applications with noise (DBSCAN). Then, given an example that a target floats down river at a speed conforming to beta distribution, the downstream boundary of each curve segment in the future time is expanded and predicted by the mean speed. The rolling self-organizing map (RSOM) neural network is utilized to determine the coverage sequence of curve segments dynamically. On this basis, the whole path of UAVs is a successive combination of the coverage paths and the transferring paths, which are planned by the Dubins method with modified guidance vector field (MGVF) for obstacle avoidance and communication connectivity. Finally, the good performance of our method is verified on a real river map through simulation. Compared with the full sweeping method, our method can improve the efficiency by approximately 31.5%. The feasibility is also verified through a real experiment, where our method can improve the efficiency by approximately 16.3%.

Funder

Key Laboratory of Industrial Internet and Big Data, China National Light Industry, Beijing Technology and Business University

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3