Climate Effects on Black Spruce and Trembling Aspen Productivity in Natural Origin Mixed Stands

Author:

Sharma Mahadev

Abstract

Forest managers need site productivity estimates for tree species growing in mixed stands. Models developed in the past are generally for pure stands and don’t factor in the effects of climate change on site productivity. Therefore, site index (SI) models were developed for black spruce (Picea mariana Mill. B.S.P.) and trembling aspen (Populus tremuloides Michx.) trees grown in natural origin mixed stands. For this, 186 trees (93 black spruce and trembling aspen each) were sampled from 31 even-aged natural mixed stands (sites) (3 trees/species/site) across Ontario, Canada. Stand height growth models were developed by incorporating climate variables during growth for each species. Stem analysis data collected from sampled trees were used to develop these models. A mixed effects modelling approach was used to fit the models. The relationship between SIs of black spruce and trembling aspen grown in mixed stands was analyzed by calculating correlation coefficients and plotting black spruce SIs against those of trembling aspen. Climate effects on site productivity were evaluated by predicting stand heights for 4 geographic areas of Ontario for the period 2021 to 2080. Three emissions scenarios reflecting different amounts of heat at the end of the century (i.e., 2.6, 4.5, and 8.5 watts m−2) were used in the stand height growth models developed here for evaluation. Climate effects were more pronounced for trembling aspen than black spruce only in the far west. The relationship between SIs of black spruce and trembling aspen trees grown in natural origin mixed stands could not be described using a linear/nonlinear mathematical function. The models developed here can be used to estimate stand height and SI of black spruce and trembling aspen trees grown in natural origin mixed stands in a changing climate. In the absence of climate data, models fitted without climate variables can be used to estimate SI of both species.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3