Binary Noise Guidance Learning for Remote Sensing Image-to-Image Translation

Author:

Zhang Guoqing12ORCID,Zhou Ruixin1,Zheng Yuhui3ORCID,Li Baozhu4

Affiliation:

1. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Jiangsu Key Laboratory of Image and Video Understanding for Social Safety, Nanjing University of Science and Technology, Nanjing 210094, China

3. The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Qinghai Normal University, Xining 810008, China

4. Internet of Things & Smart City Innovation Platform, Zhuhai Fudan Innovation Institute, Zhuhai 519031, China

Abstract

Image-to-image translation (I2IT) is an important visual task that aims to learn a mapping of images from one domain to another while preserving the representation of the content. The phenomenon known as mode collapse makes this task challenging. Most existing methods usually learn the relationship between the data and latent distributions to train more robust latent models. However, these methods often ignore the structural information among latent variables, leading to patterns in the data being obscured during the process. In addition, the inflexibility of data modes caused by ignoring the latent mapping of two domains is also one of the factors affecting the performance of existing methods. To make the data schema stable, this paper develops a novel binary noise guidance learning (BnGLGAN) framework for image translation to solve these problems. Specifically, to eliminate uncertainty of domain distribution, a noise prior inference learning (NPIL) module is designed to infer an estimated distribution from a certain domain. In addition, to improve the authenticity of reconstructed images, a distribution-guided noise reconstruction learning (DgNRL) module is introduced to reconstruct the noise from the source domain, which can provide source semantic information to guide the GAN’s generation. Extensive experiments fully prove the efficiency of our proposed framework and its advantages over comparable methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Shandong Provincial Natural Science Foundation

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3