Spatiotemporal Analysis and Prediction of Carbon Emissions from Energy Consumption in China through Nighttime Light Remote Sensing

Author:

Zhang Zhaoxu123ORCID,Fu Shihong1,Li Jiayi1,Qiu Yuchen1,Shi Zhenwei4,Sun Yuanheng5ORCID

Affiliation:

1. School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China

2. The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration, Qinhuangdao 066000, China

3. Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao 066000, China

4. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

5. Environmental Information Institute, Navigation College, Dalian Maritime University, Dalian 116026, China

Abstract

With burgeoning economic development, a surging influx of greenhouse gases, notably carbon dioxide (CO2), has precipitated global warming, thus accentuating the critical imperatives of monitoring and predicting carbon emissions. Conventional approaches employed in the examination of carbon emissions predominantly rely on energy statistics procured from the National Bureau of Statistics and local statistical bureaus. However, these conventional data sources, often encapsulated in statistical yearbooks, exclusively furnish insights into energy consumption at the national and provincial levels, so the assessment at a more granular scale, such as the municipal and county levels, poses a formidable challenge. This study, using nighttime light data and statistics records spanning from 2000 to 2019, undertook a comparative analysis, scrutinizing various modeling methodologies, encompassing linear, exponential, and logarithmic models, with the aim of assessing carbon emissions across diverse spatial scales. A multifaceted analysis unfolded, delving into the key attributes of China’s carbon emissions, spanning total carbon emissions, per capita carbon emissions, and carbon emission intensity. Spatial considerations were also paramount, encompassing an examination of carbon emissions across provincial, municipal, and county scales, as well as an intricate exploration of spatial patterns, including the displacement of the center of gravity and the application of trend analyses. These multifaceted analyses collectively contributed to the endeavor of predicting China’s future carbon emission trajectory. The findings of the study revealed that at the national scale, total carbon emissions exhibited an annual increment throughout the period spanning 2000 to 2019. Secondly, upon an in-depth evaluation of model fitting, it was evident that the logarithmic model emerged as the most adept in terms of fitting, presenting a mean R2 value of 0.83. Thirdly, the gravity center of carbon emissions in China was situated within Henan Province, and there was a discernible overall shift towards the southwest. In 2025 and 2030, it is anticipated that the average quantum of China’s carbon emissions will reach 7.82 × 102 million and 25.61 × 102 million metric tons, with Shandong Province emerging as the foremost contributor. In summary, this research serves as a robust factual underpinning and an indispensable reference point for advancing the scientific underpinnings of China’s transition to a low-carbon economy and the judicious formulation of policies governing carbon emissions.

Funder

Open Foundation of Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3