Exploring the Spatiotemporal Dynamics and Driving Factors of Net Ecosystem Productivity in China from 1982 to 2020

Author:

Chen Yang12ORCID,Xu Yongming1ORCID,Chen Tianyu23ORCID,Zhang Fei1,Zhu Shanyou1

Affiliation:

1. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

Abstract

Understanding the net ecosystem productivity (NEP) is essential for understanding ecosystem functioning and the global carbon cycle. Utilizing meteorological and The Advanced Very High Resolution Radiometer (AVHRR) remote sensing data, this study employed the Carnegie–Ames–Stanford Approach (CASA) and the Geostatistical Model of Soil Respiration (GSMSR) to map a monthly vegetation NEP in China from 1982 to 2020. Then, we examined the spatiotemporal trends of NEP and identified the drivers of NEP changes using the Geodetector model. The mean NEP over the 39-year period amounted to 265.38 gC·m−2. Additionally, the average annual carbon sequestration amounted to 1.89 PgC, indicating a large carbon sink effect. From 1982 to 2020, there was a general fluctuating increasing trend observed in the annual mean NEP, exhibiting an overall average growth rate of 4.69 gC·m−2·a−1. The analysis revealed that the majority of the vegetation region in China, accounting for 93.45% of the entirety, exhibited increasing trends in NEP. According to the Geodetector analysis, precipitation change rate, solar radiation change rate, and altitude were the key driving factors in NEP change rate. Furthermore, the interaction between the precipitation change rate and altitude demonstrated the most significant effect.

Funder

the Science and Technology Research Plan in Key Areas of Xin 404 jiang Production and Construction Corps

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3