Pan-Sharpening Network of Multi-Spectral Remote Sensing Images Using Two-Stream Attention Feature Extractor and Multi-Detail Injection (TAMINet)

Author:

Wang Jing12,Miao Jiaqing1ORCID,Li Gaoping1,Tan Ying3ORCID,Yu Shicheng4,Liu Xiaoguang1,Zeng Li1,Li Guibing35

Affiliation:

1. School of Mathematics, Southwest Minzu University, Chengdu 610041, China

2. School of Information and Business Management, Chengdu Neusoft University, Chengdu 611844, China

3. Key Laboratory of Computer System, State Ethnic Affairs Commission, College of Computer Science and Engineering, Southwest Minzu University, Chengdu 610041, China

4. School of Big Data and Artificial Intelligence, Chengdu Technological University, Chengdu 611730, China

5. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract

Achieving a balance between spectral resolution and spatial resolution in multi-spectral remote sensing images is challenging due to physical constraints. Consequently, pan-sharpening technology was developed to address this challenge. While significant progress was recently achieved in deep-learning-based pan-sharpening techniques, most existing deep learning approaches face two primary limitations: (1) convolutional neural networks (CNNs) struggle with long-range dependency issues, and (2) significant detail loss during deep network training. Moreover, despite these methods’ pan-sharpening capabilities, their generalization to full-sized raw images remains problematic due to scaling disparities, rendering them less practical. To tackle these issues, we introduce in this study a multi-spectral remote sensing image fusion network, termed TAMINet, which leverages a two-stream coordinate attention mechanism and multi-detail injection. Initially, a two-stream feature extractor augmented with the coordinate attention (CA) block is employed to derive modal-specific features from low-resolution multi-spectral (LRMS) images and panchromatic (PAN) images. This is followed by feature-domain fusion and pan-sharpening image reconstruction. Crucially, a multi-detail injection approach is incorporated during fusion and reconstruction, ensuring the reintroduction of details lost earlier in the process, which minimizes high-frequency detail loss. Finally, a novel hybrid loss function is proposed that incorporates spatial loss, spectral loss, and an additional loss component to enhance performance. The proposed methodology’s effectiveness was validated through experiments on WorldView-2 satellite images, IKONOS, and QuickBird, benchmarked against current state-of-the-art techniques. Experimental findings reveal that TAMINet significantly elevates the pan-sharpening performance for large-scale images, underscoring its potential to enhance multi-spectral remote sensing image quality.

Funder

NSFC

Sichuan Science and Technology Project

Sichuan Provincial Program of Traditional Chinese Medicine

Sichuan Science and Technology Program

Fundamental Research Funds for the Central Universities, Southwest Minzu University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3