Improving Geological Remote Sensing Interpretation via Optimal Transport-Based Point–Surface Data Fusion

Author:

Wu Jiahao1ORCID,Han Wei1ORCID,Chen Jia1ORCID,Wang Sheng1

Affiliation:

1. School of Computer Science, China University of Geosciences, Wuhan 430078, China

Abstract

High-quality geological remote sensing interpretation (GRSI) products play a vital role in a wide range of fields, including the military, meteorology, agriculture, the environment, mapping, etc. Due to the importance of GRSI products, this research aimed to improve their accuracy. Although deep-learning (DL)-based GRSI has reduced dependence on manual interpretation, the limited accuracy of multiple geological element interpretation still poses a challenge. This issue can be attributed to small inter-class differences, the uneven distribution of geological elements, sensor limitations, and the complexity of the environment. Therefore, this paper proposes a point–surface data optimal fusion method (PSDOF) to improve the accuracy of GRSI products based on optimal transport (OT) theory. PSDOF combines geological survey data (which has spatial location and geological element information called point data) with a geological remote sensing DL interpretation product (which has limited accuracy and is called surface data) to improve the quality of the resulting output. The method performs several steps to enhance accuracy. First, it calculates the gray-scale correlation feature information for the pixels adjacent to the geological survey points. Next, it determines the distribution of the feature information for geological elements in the vicinity of the point data. Finally, it incorporates complementary information from the survey points into the geological elements’ interpretation boundary, as well as calculates the optimal energy loss for point–surface fusion, thus resulting in an optimal boundary. The experiments conducted in this study demonstrated the superiority of the proposed model in addressing the problem of the limited accuracy of GRSI products.

Funder

National Natural Science Foundation of China

Open Research Program of the International Research Center of Big Data for Sustainable Development Goals

Hubei Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3