Remote Sensing Image Retrieval Algorithm for Dense Data

Author:

Li Xin12ORCID,Liu Shibin1,Liu Wei1

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With the rapid development of remote sensing technology, remote sensing products have found increasingly widespread applications across various fields. Nevertheless, as the volume of remote sensing image data continues to grow, traditional data retrieval techniques have encountered several challenges such as substantial query results, data overlap, and variations in data quality. Users need to manually browse and filter a large number of remote sensing datasets, which is a cumbersome and inefficient process. In order to cope with these problems of traditional remote sensing image retrieval methods, this paper proposes a remote sensing image retrieval algorithm for dense data (DD-RSIRA). The algorithm establishes evaluation metrics based on factors like imaging time, cloud coverage, and image coverage. The algorithm utilizes the global grids to create an ensemble coverage relation between images and grids. A locally optimal initial solution is obtained by a greedy algorithm, and then a local search is performed to search for the optimal solution by combining the strategies of weighted gain-loss scheme and novel mechanism. Ultimately, it achieves an optimal coverage of remote sensing images within the region of interest. In this paper, it is shown that the method obtains a smaller number of datasets with lower redundancy and higher data utilization and ensures the data quality to a certain extent in order to accurately meet the requirements of the regional coverage of remote sensing images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3