STPF-Net: Short-Term Precipitation Forecast Based on a Recurrent Neural Network

Author:

Wang Jingnan1ORCID,Wang Xiaodong1ORCID,Guan Jiping2ORCID,Zhang Lifeng2ORCID,Zhang Fuhan3,Chang Tao1

Affiliation:

1. College of Computer, National University of Defense and Technology, Changsha 410073, China

2. College of Meteorology and Oceanography, National University of Defense and Technology, Changsha 410073, China

3. Xi’an Satellite Control Center, Xi’an 710049, China

Abstract

Accurate and timely precipitation forecasts are critical in modern society, influencing both economic activity and daily life. While deep learning methods leveraging remotely sensed radar data have become prevalent for precipitation nowcasting, longer-term forecasting remains challenging. This is due to accumulated errors in deep learning models and insufficient information about precipitation systems over longer time horizons. To address these challenges, we introduce the Short-Term Precipitation Forecast Network (STPF-Net), a recurrent neural network designed for longer-term precipitation prediction. STPF-Net uses a multi-tier structure with varying temporal resolutions to mitigate the accumulated errors during longer forecasts. Additionally, its transformer-based module incorporates larger spatial contexts, providing more complete information about precipitation systems. We evaluated STPF-Net on radar data from southeastern China, training separate models for 6 and 12 h forecasts. Quantitative results demonstrate STPF-Net achieved superior accuracy and lower errors compared to benchmark deep learning and numerical weather prediction models. Visualized case studies indicate reasonably coherent 6 h predictions from STPF-Net versus other methods. For 12 h forecasts, while STPF-Net outperformed other models, it still struggled with storm initiation over longer forecasting time.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3