Joint Particle Swarm Optimization of Power and Phase Shift for IRS-Aided D2D Underlaying Cellular Systems

Author:

Wang Ruijie1,Wen Xun1,Xu Fangmin1,Ye Zhijian1,Cao Haiyan1,Hu Zhirui1,Yuan Xiaoping2

Affiliation:

1. Key Laboratory of Data Storage and Transmission Technology of Zhejiang Province, Institute of Communications Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

2. Information Engineering School, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Device-to-device (D2D) communication is a promising wireless communication technology which can effectively reduce the traffic load of the base station and improve the spectral efficiency. The application of intelligent reflective surfaces (IRS) in D2D communication systems can further improve the throughput, but the problem of interference suppression becomes more complex and challenging due to the introduction of new links. Therefore, how to perform effective and low-complexity optimal radio resource allocation is still a problem to be solved in IRS-assisted D2D communication systems. To this end, a low-complexity power and phase shift joint optimization algorithm based on particle swarm optimization is proposed in this paper. First, a multivariable joint optimization problem for the uplink cellular network with IRS-assisted D2D communication is established, where multiple DUEs are allowed to share a CUE’s sub-channel. However, the proposed problem considering the joint optimization of power and phase shift, with the objective of maximizing the system sum rate and the constraints of the minimum user signal-to-interference-plus-noise ratio (SINR), is a non-convex non-linear model and is hard to solve. Different from the existing work, instead of decomposing this optimization problem into two sub-problems and optimizing the two variables separately, we jointly optimize them based on Particle Swarm Optimization (PSO). Then, a fitness function with a penalty term is established, and a penalty value priority update scheme is designed for discrete phase shift optimization variables and continuous power optimization variables. Finally, the performance analysis and simulation results show that the proposed algorithm is close to the iterative algorithm in terms of sum rate, but lower in power consumption. In particular, when the number of D2D users is four, the power consumption is reduced by 20%. In addition, compared with PSO and distributed PSO, the sum rate of the proposed algorithm increases by about 10.2% and 38.3%, respectively, when the number of D2D users is four.

Funder

Natural Science Foundations of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3