Distributions, Relationship and Assessment of Major Ions and Potentially Toxic Elements in Waters of Bosten Lake, the Former Largest Inland and Freshwater Lake of China

Author:

Liu WenORCID,Ma LongORCID,Abuduwaili JililiORCID,Lin Lin

Abstract

As one of the important water sources of the desert ecosystem in the Tarim Basin, the largest fishery base in Xinjiang, and the former largest inland and freshwater lake of China, the water quality of Bosten Lake is worthy of government and public attention. To determine the water’s hydrochemical composition and the water quality of Bosten Lake, analyses of the spatial distribution, water pollution status and irrigation suitability were conducted with statistical methods, including redundancy and factor analyses, inverse distance weighted interpolation, and water quality assessment and saturation index simulation of minerals in the water from a survey done in 2018. The results suggested that the average total dissolved solids (TDS) of Bosten Lake in 2018 was 1.32 g/L, and the lake is alkaline with a pH of 8.47. The strength of the water exchange capacity affected the spatial distribution of TDS. The spatial distribution of TDS and its value can be significantly changed by restoring the water supply of seasonal rivers in the northwest. The water of Bosten Lake contains sulfate and sodium groups, which are mainly affected by lake evaporation. As the pH increases, the content of carbonate ions increases, while the content of bicarbonate ions decreases. The spatial distributions of other major ions are consistent with that of the TDS. The spatial distribution of potentially toxic elements is more complicated than that of major ions. In general, the spatial distribution of Cu and As is more consistent with the spatial distribution of electrical conductivity or TDS. The spatial distributions of the Zn, Se and pH values are more consistent with respect to other variables. Although the water of Bosten Lake is still at a permissible level for water irrigation, the lake is moderately polluted, and the local site almost has a highly polluted status. The research results are of great significance for lake environmental protection and management as well as watershed ecological restoration.

Funder

National Natural Science Foundation of China

CAS West Light Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3