The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers

Author:

Dziaduszewska Magda,Wekwejt MarcinORCID,Bartmański MichałORCID,Pałubicka Anna,Gajowiec Grzegorz,Seramak Tomasz,Osyczka Anna M.,Zieliński Andrzej

Abstract

Spacers, in terms of instruments used in revision surgery for the local treatment of postoperative infection, are usually made of metal rod covered by antibiotic-loaded bone cement. One of the main limitations of this temporary implant is the debonding effect of metal–bone cement interface, leading to aseptic loosening. Material selection, as well as surface treatment, should be evaluated in order to minimize the risk of fraction and improve the implant-cement fixation the appropriate manufacturing. In this study, Ti13Zr13Nb alloys that were prepared by Selective Laser Melting and surface treated were coated with bone cement loaded with either gentamicin or nanosilver, and the effects of such alloy modifications were investigated. The SLM-made specimens of Ti13Zr13Nb were surface treated by sandblasting, etching, or grounding. For each treatment, Scanning Electron Microscope (SEM), contact profilometer, optical tensiometer, and nano-test technique carried out microstructure characterization and surface analysis. The three types of bone cement i.e., pure, containing gentamicin and doped with nanosilver were applied to alloy surfaces and assessed for cement cohesion and its adhesion to the surface by nanoscratch test and pull-off. Next, the inhibition of bacterial growth and cytocompatibility of specimens were investigated by the Bauer-Kirby test and MTS assay respectively. The results of each test were compared to the two control groups, consisting of commercially available Ti13Zr13Nb and untreated SLM-made specimens. The highest adhesion bone cement to the titanium alloy was obtained for specimens with high nanohardness and roughness. However, no explicit relation of adhesion strength with wettability and surface energy of alloy was observed. Sandblasting or etching were the best alloys treatments in terms of the adhesion of either pure or modified bone cements. Antibacterial additives for bone cement affected its properties. Gentamicin and nanosilver allowed for adequate anti-bacterial protection while maintaining the overall biocompatibility of obtained spacers. However, they had different effects on the cement’s adhesive capacity or its own cohesion. Furthermore, the addition of silver nanoparticles improved the nanomechanical properties of bone cements. Surface treatment and method of fabrication of titanium affected surface parameters that had a significant impact on cement-titanium fixation.

Publisher

MDPI AG

Subject

General Materials Science

Reference73 articles.

1. The preformed spacers: From the idea to the realization of an industrial device;Soffiatti,2007

2. Surface analysis of the spacer before and after the clinical use;Cigada,2007

3. Two-stage revision of infected total hip replacement using a preformed, antibiotic-loaded acrylic cement spacer;Magnan,2007

4. Cements as bone repair materials;Ginebra,2019

5. Antibiotic cement spacers in total hip and total knee arthroplasty: Problems, pitfalls, and avoiding complications;Burnett,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3