Abstract
Scaffolds are considered promising materials for tissue engineering applications due to their unique physiochemical properties. The high porosity and adequate mechanical properties of the scaffolds facilitate greater cell adhesion, proliferation, and differentiation. Stem cells are frequently applied in tissue engineering applications due to their excellent potential. It has been noted that cell functions are profoundly affected by the nature of the extracellular matrix (ECM). Naturally derived ECM contains the bioactive motif that also influences the immune response of the organism. The properties of polymer scaffolds mean they can resemble the native ECM and can regulate cellular responses. Various techniques such as electrospinning and 3D printing, among others, are frequently used to fabricate polymer scaffolds, and their cellular responses are different with each technique. Furthermore, enhanced cell viability, as well as the differentiation ability of stem cells on the surface of scaffolds, opens a fascinating approach to the formation of ECM-like environments for tissue engineering applications.
Funder
National Research Foundation of Korea
Subject
General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献