Comparative Study on Viscoelastic Evaluation Methods of Polymer Materials Based on Ultrasonic Method

Author:

Li ,Chang ,Huang ,Tang

Abstract

Rubber, as a kind of macromolecular material often used in large ships, aviation, aerospace, and other fields, has remarkable viscoelasticity at room temperature. Therefore, it is of great significance to evaluate the viscoelastic properties of polymer composites. In this paper, four kinds of rubber materials are taken as research objects. Based on the principle of ultrasonic detection, the viscoelastic evaluation of the sample materials is carried out through experiments and simulations. On the basis of previous research, the surface reflection method (SRM) and the bottom reflection method (BRM) are compared in depth. First, the spectrum of received signals is analyzed, and the storage elastic modulus, loss elastic modulus, attenuation coefficient and loss tangent value are obtained. Secondly, the results of the BRM and the SRM are compared and analyzed in the frequency domain of –6 dB. The results show that both the SRM and BRM are feasible in the evaluation of the viscoelasticity of the material, and the variation trends observed for the above-mentioned parameters in the effective frequency domain are consistent, especially at the center frequency. Finally, aiming at the mode transformation of the acoustic wave around the ultrasonic sensor, the practical performance of the surface reflection method is optimized by increasing the diameter of the ultrasonic sensor.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3