Assessing the Roles of Terrestrial Stilling and Solar Dimming in Land Surface Drying/Wetting across China

Author:

Duan Kai,Guo Jiali,Hu Tiesong,Wang Xianxun,Mei YadongORCID

Abstract

Decreases in wind speed (i.e., terrestrial stilling) and radiation (i.e., solar dimming) have been identified as important causes of aridity change both globally and regionally. To understand how their roles have varied across different natural and socioeconomic circumstances in China, this study presents a nationwide attribution analysis of land surface drying/wetting across the ten first-level river basins. The results suggest that consistent warming and reductions in relative humidity have significantly enhanced atmospheric evaporative demand and driven the land surface to become drier over the past six decades. However, the widespread terrestrial stilling and solar dimming have largely offset such trends by suppressing evaporation. While spatially varying changes in precipitation were the most influential driver of aridity change over half of the 713 used climate sites, decreasing wind speed and radiation were identified as the dominant cause of wetting at 15% and 13% of the sites, respectively. The impacts of terrestrial stilling and solar dimming were generally more prominent in the north (e.g., the Liao River, Songhuajiang, Hai River, and Huai River basins) and south (e.g., the Southeast, Pearl River, and Yangtze River basins) respectively, which could be associated with the weakening monsoon and intensified anthropogenic disturbances such as ecological restoration, urbanization, and air pollution. We conclude that more attention needs to be paid to the independent and combined climatological impacts of global- and regional-level human activities to develop proactive adaptation strategies of water and land management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3