A Two-Step Cultivation Strategy for High Biomass Production and Lipid Accumulation of Raphidocelis subcapitata Immobilized in Alginate Gel

Author:

Benasla Amel,Hausler Robert

Abstract

This work focuses on a culture strategy that combines high biomass production and lipid accumulation in the green microalgae Raphidocelis subcapitata immobilized in alginate gel in order to obtain high lipid productivity for biodiesel production. The study of the effects of nitrogen and phosphorus deficiency on lipid accumulation and biomass production in immobilized microalgae showed that both conditions (N− and P−) promoted lipid accumulation in the microalgae. The lipid contents achieved under nitrogen (31.7% ± 3.2% (dcw)) and phosphorus (19.4% ± 1.9% (dcw)) deficiency conditions were higher than those obtained in the complete medium (control) (14.9% ± 1.5% (dcw)). The highest lipid productivity was recorded under nitrogen deficiency conditions (PL = 11.1 ± 1.1 mg/L/day). This indicated that nitrogen deficiency was more effective than phosphorus deficiency in terms of triggering lipid accumulation in the microalgae. However, the conditions for inducing lipid accumulation (N− or P−) resulted in slower growth. In order to address this issue and achieve high lipid productivity, a two-step culture strategy was used. Immobilized R. subcapitata was cultivated under optimal concentrations of nitrogen and phosphorus to achieve a high biomass concentration. Thereafter, the beads containing the microalgae were transferred to a culture medium under nitrogen deficiency conditions in order to induce lipid accumulation. The concentrations 1.5 g/L of NaNO3 and 20 mg/L of K2HPO4 were determined as being the optimal concentrations for growth, and they produced the highest biomass production rates (µm max = 0.233 ± 0.023 day−1 and µm max = 0.225 ± 0.022 day−1 for NaNO3 and K2HPO4, respectively) from all of the concentrations studied. With the two-step culture strategy, immobilized R. subcapitata accumulated 37.9 ± 3.8% of their dry weight in lipid and reached a lipid productivity value of PL = 40.3 ± 4.0 mg/L/day under nitrogen deficiency conditions. This value was approximately 3.6 times higher than that obtained in the direct culture of cells under nitrogen deficiency conditions (PL = 11.1 ± 1.1 mg/L/day).

Publisher

MDPI AG

Reference50 articles.

1. 2. Les combustibles fossiles;Bobin,2021

2. L’avenir du pétrolehttps://www.sciencespo.fr/ceri/sites/sciencespo.fr.ceri/files/art_jpf.pdf

3. The Costs and Implications of Our Demand for Energy: A Comparative and Comprehensive Analysis of the Available Energy Resourceshttps://papers.ssrn.com/sol3/papers.cfm?abstract_id=3189719

4. Changement climatique et gaz à effet de serre : un problème ancien qui évolue de manière extrêmement rapide

5. Potentiel des Microalgues;Bonnefond,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3