Bi-Directional Cuk Equalizer-Based Li-Ion Battery Pack Equalization Control Strategy Research

Author:

Wang Xiaolu1,Tan Zefu1,Cai Li1,Lei Guoping1,Dai Nina1

Affiliation:

1. Department of Electrical Engineering, Chongqing Three Gorges University, Chongqing 404100, China

Abstract

For the secure usage of battery charging and discharging within electric vehicles, the study of cell pack equalization technology is essential. Therefore, in this paper, an improved Bidirectional Cuk equalizer (BCEQ) structure based on a variable-domain fuzzy PID (VFPID) control equalization strategy is recommended in stages. With the new equalization topology, only half of the capacitive and inductive components are needed to transfer energy between any two individual cells in the power supply. In addition, the proposed VFPID control strategy further improves the efficiency of the equalization model by dynamically adjusting the magnitude of the equalization current parameters. Through simulation experiments, the improved topology was capable of substantially lessening the equalization time and increasing energy utilization by more than 4%. In comparison with the fuzzy PID (FPID) algorithm, around 27.3% faster equalization times can be achieved with the VFPID algorithm; the VFPID algorithm also performed well under the Dynamic Stress Test (DST) condition, demonstrating that the topology and equalization strategy suggested in this paper can successfully address the inconsistency of the FPID algorithm. It has been revealed that the topology and equalization methodology offered in this paper is effective in solving the battery pack inconsistency.

Funder

the Natural Science Foundation of Chongqing, China

Science and Technology Research Plan of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Critical Comparison of the Cuk and the Sheppard–Taylor Converter;World Electric Vehicle Journal;2023-06-04

2. Extended Analysis of Non-Isolated Bidirectional High Gain Converter;Advances in Electrical and Computer Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3