Supervised Learning Technique for First Order Multipaths Identification of V2V Scenario

Author:

Bakhuraisa Yaser A.1,Abd Aziz Azlan B.1,Geok Tan K.1,Abu Bakar Norazhar B.2,Jamian Saifulnizan B.3ORCID,Mustakim Fajaruddin B.3

Affiliation:

1. Faculty of Engineering and Technology, Multimedia University, Melaka 75440, Malaysia

2. Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Melaka 76100, Malaysia

3. Crashworthiness and Collisions Research Group, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia

Abstract

In geometrical localization techniques, the propagated signal’s first-order multipath (FOMP) characteristics are used to calculate the location based on geometrical relationships. Utilizing the characteristics of higher order multipath (HOMP) results in a significant localization error. Therefore, distinguishing between FOMPs and HOMPs is an important task. The previous works used traditional methods based on a deterministic threshold to accomplish this task. Unfortunately, these methods are complicated and insufficiently accurate. This paper proposes an efficient method based on supervised learning to distinguish more accurately between the propagated FOMP and HOMP of millimeter-Wave Vehicle-to-Vehicle communication in an urban scenario. Ray tracing technique based on Shoot and Bounce Ray (SBR) is used to generate the dataset’s features including received power, propagation time, the azimuth angle of arrival (AAOA), and elevation angle of arrival (EAOA). A statistical analysis based on the probability distribution function (PDF) is presented first to study the selected features’ impact on the classification process. Then, six supervised classifiers, namely Decision Tree, Naive Bayes, Support Vector Machine, K-Nearest Neighbors, Random Forest, and artificial neural network, are trained and tested, and their performance is compared in terms of HOMP misclassification. The effect of the considered features on the classifiers’ performance is further investigated. Our results showed that all the proposed classifiers provided an acceptable classification performance. The proposed ANN showed the best performance, whereas the NB was the worst. In fact, the HOMP misclassification error varied between 2.3% and 16.7%. The EAOA exhibited the most significant influence on classification performance, while the AAOA was the least.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3