Optimal Planning of Electric Vehicle Charging Stations Considering Traffic Load for Smart Cities

Author:

Campaña Miguel1ORCID,Inga Esteban12ORCID

Affiliation:

1. Department of Master of Electricity, Universidad Politécnica Salesiana, Quito 170525, Ecuador

2. Smart Grid Research Group, Universidad Politécnica Salesiana, Quito 170525, Ecuador

Abstract

The massive introduction of electric vehicles as a mobility alternative requires deploying an infrastructure of charging stations for electric cars (ICSEC). This new mobility concept will mitigate the environmental harm caused by the emission of CO2 generated by conventional internal combustion mobility methods. The sustainability of the ICSEC depends not only on the capacity to meet the demand for charging batteries for electric vehicles (EV) but also on an adequate number of public/private charging stations (CS) distributed in a geolocalized area. It is noted that the distribution of CS must respond to a set of real mobility constraints, such as vehicular flow capacity, road capacity, and trajectories. The planning, intelligent location of public charging stations (PCS), and contingency analysis will enable us to study the increase in demand for electrical distribution substations (EDS). Therefore, the present model explains the need to plan the massive introduction of EVs by observing the user’s conditions at the trajectory level through finite resource allocation processes, segmentation, and minimum spanning trees, by observing heterogeneous vehicular flow criteria through microscopic analysis, to understand the space–time relationship of vehicular flow in georeferenced scenarios. Consequently, the computational complexity of the model is of the combinatorial type, and it is defined as NP-Hard given the multiple variables and constraints within the transportation problem.

Funder

Smart Grid Research Group (GIREI) of Universidad Politécnica Salesiana

Power Grids and Smart Cities (RECI), Salesian Institutions of Higher Education

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3