Appearance of a Solitary Wave Particle Concentration in Nanofluids under a Light Field

Author:

Livashvili Abram,Krishtop VictorORCID,Vinogradova Polina,Karpets Yuriy,Efremenko Vyacheslav,Syuy AlexanderORCID,Kuzmichev Evgenii,Igumnov Pavel

Abstract

In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are associated with the phenomenon of thermal diffusion, which is considered to be positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation were derived and investigated, one of which was presented in the form of a solitary concentration wave. These solutions were derived considering the dependence of the coefficients of thermal conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid. Furthermore, an expression was obtained for the solitary wave velocity, which depends on the absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave velocity for a specific nanofluid—water/silver—are given. The results of this study can be useful in the creation of next-generation solar collectors.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference37 articles.

1. Hybrid Nanofluids for Convection Heat Transfer;Ali,2020

2. Modern Problems of Micro- and Nanofluidics;Rudyak,2016

3. Optical and Structural Properties of Nanobiomaterials

4. Bioinspired Peptide-Based Photonic Integrated Devices;Handelman,2018

5. Ball Milled Graphene Nano Additives for Enhancing Sliding Contact in Vegetable Oil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3