Efficient Structural Relaxation of Polycrystalline Graphene Models

Author:

D’Ambrosio FedericoORCID,Barkema Joris,Barkema Gerard T.

Abstract

Large samples of experimentally produced graphene are polycrystalline. For the study of this material, it helps to have realistic computer samples that are also polycrystalline. A common approach to produce such samples in computer simulations is based on the method of Wooten, Winer, and Weaire, originally introduced for the simulation of amorphous silicon. We introduce an early rejection variation of their method, applied to graphene, which exploits the local nature of the structural changes to achieve a significant speed-up in the relaxation of the material, without compromising the dynamics. We test it on a 3200 atoms sample, obtaining a speed-up between one and two orders of magnitude. We also introduce a further variation called early decision specifically for relaxing large samples even faster, and we test it on two samples of 10,024 and 20,000 atoms, obtaining a further speed-up of an order of magnitude. Furthermore, we provide a graphical manipulation tool to remove unwanted artifacts in a sample, such as bond crossings.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3