Dimethylglyoxime Clathrate as Ligand Derived Nitrogen-Doped Carbon-Supported Nano-Metal Particles as Catalysts for Oxygen Reduction Reaction

Author:

Xu Luping,Guo Zhongqin,Jiang Hanyu,Xu Siyu,Ma Juanli,Hu Mi,Yu Jiemei,Zhao Fengqi,Huang TaizhongORCID

Abstract

Nitrogen-doped carbon-supported metal nano-particles show great promise as high-performance catalysts for novel energies, organic synthesis, environmental protection, and other fields. The synergistic effect between nitrogen-doped carbon and metal nano-particles enhances the catalytic properties. Thus, how to effectively combine nitrogen-doped carbon with metal nano-particles is a crucial factor for the synthesis of novel catalysts. In this paper, we report on a facile method to prepare nitrogen-doped carbon-supported metal nano-particles by using dimethylgly-oxime as ligand. The nano-particles of Pd, Ni, Cu, and Fe were successfully prepared by the pyrolysis of the corresponding clathrate of ions and dimethylglyoxime. The ligand of dimethylglyoxime is adopted as the source for the nitrogen-doped carbon. The nano-structure of the prepared Pd, Ni, Cu, and Fe particles are confirmed by X-ray diffraction, scanning electron microscopy, and trans-mission electron microscopy tests. The catalytic performances of the obtained metal nano-particles for oxygen reduction reaction (ORR) are investigated by cyclic voltammetry, Tafel, linear sweeping voltammetry, rotating disc electrode, rotating ring disc electrode, and other technologies. Results show that the nitrogen-doped carbon-supported metal nano-particles can be highly efficient catalysts for ORR. The results of the paper exhibit a facile methodology to prepare nitrogen-doped carbon-supported metal nano-particles.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3