DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications

Author:

Lee JunheeORCID,Yoon Young SeogORCID,Oh Hyun WooORCID,Park Kwang Roh

Abstract

In this paper, we propose a novel MAC protocol, called DG-LoRa, for improving scalability in low power wide area networks. DG-LoRa is backward compatible with legacy LoRaWAN and adds new features, such as group acknowledgment transmissions in the time-synchronized frame structure that supports determinism on channel access. In DG-LoRa, the number of responses to data frames that are transmitted from end devices is maximized by allocating the spreading factor and timeslot in the frame structure. We evaluate the performance of DG-LoRa using the Monte-Carlo simulation and then compare it with the performance of legacy LoRaWAN in terms of data drop rate and the number of retransmissions. Our numerical results show that DG-LoRa supports approximately five times more connections to the LoRa network satisfying a 5% data drop rate. Also, it is observed that DG-LoRa enables low overhead by reducing the number of data frame retransmissions.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference21 articles.

1. Cisco Annual Internet Report (2018–2023) White Paperhttps://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

2. The 3rd Generation Partnership Projecthttp://www.3gpp.org/

3. Comparative Study of LPWAN Technologies on Unlicensed Bands for M2M Communication in the IoT: beyond LoRa and LoRaWAN

4. Low Power Wide Area Networks: An Overview

5. Understanding the Limits of LoRaWAN

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3