Combined Physical Process and Deep Learning for Daily Water Level Simulations across Multiple Sites in the Three Gorges Reservoir, China

Author:

Xie Mingjiang123,Shan Kun123ORCID,Zeng Sidong123ORCID,Wang Lan45,Gong Zhigang2,Wu Xuke4,Yang Bing6,Shang Mingsheng123

Affiliation:

1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

2. Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

5. School of Artificial Intelligence, Chongqing University of Education, Chongqing 400147, China

6. Chongqing Eco-Environmental Monitoring Center, Chongqing 401147, China

Abstract

Water level prediction in large dammed rivers is an important task for flood control, hydropower generation, and ecological protection. The variations of water levels in large rivers are traditionally simulated based on hydrological models. Recently, most studies have begun applying deep learning (DL) models as an alternative method for forecasting the dynamics of water levels. However, it is still challenging to directly apply DL to the simultaneous prediction of water levels across multiple sites. This study attempts to develop a hybrid framework by combining the Physical-based Hydrological model (PHM) and Long Short-Term Memory (LSTM). This study hypothesizes that our hybrid model can enhance the predictive accuracy of water levels in large rivers, because it considers the temporal-spatial information of mainstream-tributaries relationships. The effectiveness of the proposed model (PHM-BP-LSTM) is evaluated using the daily water levels from 2012 to 2018 in the Three Gorges Reservoir (TGR), China. Firstly, we use a hydrological model to produce a large amount of water level data to solve the limited training data set. Then, we use the Back Propagation (BP) neural network to capture the mainstream-tributaries relationship. The future changes in water levels in the different mainstream stations are simultaneously predicted by the LSTM model. We reveal that our hybrid model yields satisfactory accuracy for daily water level simulations at fourteen mainstream stations of the TGR. We further demonstrate the proposed model outperforms the traditional machine learning methods in different prediction scenarios (one-day-ahead, three-day-ahead, seven-day-ahead), with RMSE values ranging from 0.793 m to 1.918 m, MAE values ranging from 0.489 m to 1.321 m, and the average relative errors at each mainstream station are controlled below 4%. Overall, our PHM-BP-LSTM, combining physical process and deep learning, can be viewed as a potentially useful approach for water level prediction in the TGR, and possibly for the rapid forecast of changes in water levels in other large rivers.

Funder

National Natural Science Foundation of China

Chongqing Science and Technology Commission

Yunnan Science and Technology Commission

Chongqing Education Commission

West Light Foundation of The Chinese Academy of Sciences

Chongqing Ph.D. Zhitongche Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3